Malaysian Journal of Mathematical Sciences 10(S) February: 205–218 (2016) Special Issue: The 3^{rd} International Conference on Mathematical Applications in Engineering 2014 (ICMAE'14)

 MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

 Journal homepage: http://einspem.upm.edu.my/journal

The Gelfand-Naimark Theorem for C^* Algebras Over Arens Algebras

Bekbaev, D.U.¹ and Ganiev, I.G.²

¹Department of Computational and Theoretical Sciences, Faculty of Science, International Islamic University Malaysia, 25710, Kuantan, Pahang, Malaysia ²Department of Science in Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, MALAYSIA

E-mail: inam@iium.edu.my

ABSTRACT

In this paper we prove a vector version of Gelfand-Naimark theorem for C^* -algebra over Arens algebra.

Keywords: C^* algebra over Arens algebras, Gelfand-Naimark theorem, commutative algebra.

1. Introduction

The Gelfand-Naimark theorem is the one of the most important results in the theory of Banach algebras. The development of the general theory of Banach-Kantorovich C*-algebras over the ring of measurable functions naturally leads to the question about an analog of the Gelfand-Naimark theorem for such C*-modules. The theory of C*-modules comes from the work I.Kaplansky (Kaplasky, 1953). In Kusraev (1996) it was proved a vector a vector valued

version of Gelfand-Mazur's theorem for C*-modules over Stone algebra The theory of Banach-Kantorovich modules is being actively developed now (Kusraev, 2003),(Gutman, 1995). In (Ganiev and Chilin, 2003) a C*-algebra over a ring of measurable functions as a measurable bundle of a classic C*-algebras is presented. In Chilin et al. (2008) the Gelfand-Naimark theorem for C*-algebras over a ring of measurable functions is proved.

In this paper we are going to prove the Gelfand-Naimark theorem for C^* -algebras over Arens algebras.

2. Preliminaries

Let (Ω, Σ, μ) be a measurable space with a complete finite measure and let $L^0 = L^0(\Omega)$ be the algebra of all complex measurable functions defined on (Ω, Σ, μ) , E be a complex linear space.

The mapping $\|\cdot\|: E \to L^0$ is called an L^0 -valued norm on E, if for any $x, y \in E, \lambda \in C$ satisfies the following

$$||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0, ||\lambda x|| = |\lambda| ||x||, ||x + y|| \le ||x|| + ||y||.$$

A pair $(E, \|\cdot\|)$ is called a lattice-normed space (LNS) over L^0 . An LNS E is said to be *d*-decomposable, if for any $x \in E$ and for any decomposition $\|x\| = e_1 + e_2$ into a sum of disjunctive elements one can find $x_1, x_2 \in E$ such that $x = x_1 + x_2$ and $\|x_1\| = e_1, \|x_2\| = e_2$. A net $(x_\alpha)_{\alpha \in A}$ of elements of E is said to be (*bo*)-converging to $x \in E$, if the net $\|x_\alpha - x\|_{\alpha \in A}$ (o)-converges to zero in L^0 . A (*bo*)-complete *d*-decomposable LNS over L^0 is called a Banach-Kantorovich space (BKS) over L^0 ((Kusraev, 1985), P. 32; (Kusraev, 2003), P. 79).

Let U be an arbitrary *-algebra over the field \mathbb{C} of complex numbers and let U be the module over L^0 ; assume that $(\lambda u)^* = \overline{\lambda} u^*, (\lambda u)v = \lambda(uv) = u(\lambda v)$ for all $\lambda \in L^0, u, v \in U$. Consider on U a certain L^0 -valued norm $\|\cdot\|$, endowing U with the structure of a Banach-Kantorovich space, in particular, $\|\lambda u\| = |\lambda| \|u\|$ for all $\lambda \in L^0, u \in U$.

Definition 2.1. (Kusraev, 1985) U is called a C^* -algebra over L^0 , if all $u, v \in U$ satisfies $||u \cdot v|| \leq ||u|| ||v||, ||u||^2 = ||u^* \cdot u||$. If U is a C^* -algebra over L^0 with the unit e and ||e|| = 1, where **1** is the unit in L^0 , then U is called a unital C^* -algebra over L^0 .

Let X be a mapping, which sends every point $\omega \in \Omega$ to some C^{*}-algebra

Malaysian Journal of Mathematical Sciences

 $(X(\omega), \|\cdot\|_{X(\omega)})$. We assume that $X(\omega) \neq \{0\}$ for all $\omega \in \Omega$. A function u is said to be a section of X, if it is defined almost everywhere in Ω and takes values $u(\omega) \in X(\omega)$ for $\omega \in dom(u)$, where dom(u) is the domain of u.

Let L be some set of sections.

Definition 2.2. (Kusraev, 1985) A pair (\mathcal{X}, L) is called a measurable bundle of C^* -algebras, if

1. $\lambda_1 c_1 + \lambda_2 c_2 \in L$ for all $\lambda_1, \lambda_2 \in \mathbb{C}$ and $c_1, c_2 \in L$, where $\lambda_1 c_1 + \lambda_2 c_2 : \omega \in dom(c_1) \bigcap dom(c_2) \rightarrow \lambda_1 c_1(\omega) + \lambda_2 c_2(\omega);$

2. the function $||c|| : \omega \in dom(c) \to ||c(\omega)||_{U(\omega)}$ is measurable for all $c \in L$;

3. for each point $\omega \in \Omega$ the set $\{c(\omega) : c \in L, \omega \in dom(c)\}$ is dense in $U(\omega)$;

4. if $u \in L$, then $u^* \in L$, where $u^* : \omega \in dom(u) \to u(\omega)^*$;

5. if $u, v \in L$, then $u \cdot v \in L$, where $u \cdot v : \omega \in dom(u) \cap dom(v) \rightarrow u(\omega) \cdot v(\omega)$.

A section s is called stepwise, if $s(\omega) = \sum_{i=1}^{n} \chi_{A_i}(\omega)c_i(\omega)$, where $c_i \in L, A_i \in \Sigma, i = \overline{1, n}$. A section u is called measurable, if one can find a sequence $(s_n)_{n \in \mathbb{N}}$ of stepwise sections such that $||s_n(\omega) - u(\omega)||_{U(\omega)} \to 0$ for almost all $\omega \in \Omega$.

The set of all measurable sections is denoted by $M(\Omega, X)$, and $L^0(\Omega, X)$ denotes the factorization of this set with respect to equality almost everywhere on Ω . We denote by \hat{u} the class from $L^0(\Omega, X)$ containing a section $u \in$ $M(\Omega, X)$, and by $\|\hat{u}\|$ the element of L^0 containing the function $\|u(\omega)\|_{X(\omega)}$.

Put $\hat{u} \cdot \hat{v} = u(\omega) \cdot v(\omega)$ and $\hat{u}^* = u(\hat{\omega})^*$. It is shown in Kusraev (1985) that with respect to the introduced algebraic operations $(L^0(\Omega, X), \|\cdot\|)$ is a C^* -algebra over L^0 .

Let $\mathcal{L}^{\infty}(\Omega)$ be an algebra of bounded measurable functions on (Ω, Σ, μ) ; let $L^{\infty}(\Omega)$ be a factorization of $\mathcal{L}^{\infty}(\Omega)$ with respect to the equality a. e. Put $\mathcal{L}^{\infty}(\Omega, X) = \{u \in M(\Omega, X) : ||u(\omega)||_{U(\omega)} \in \mathcal{L}^{\infty}(\Omega)\}$. Elements of $\mathcal{L}^{\infty}(\Omega, X)$ are said to be essentially bounded measurable sections. By $L^{\infty}(\Omega, X)$ we denote the set of equivalence classes of essentially bounded sections.

Consider an arbitrary lifting $p: L^{\infty}(\Omega) \to \mathcal{L}^{\infty}(\Omega)$ ((Kusraev, 1985), P. 50;

(Chilin et al., 2008)).

Definition 2.3. (Kusraev, 1985) A mapping $l_{\chi} : L^{\infty}(\Omega, X) \to \mathcal{L}^{\infty}(\Omega, X)$ is called a vector-valued lifting (associated with the lifting p), if all $\hat{u}, \hat{v} \in L^{\infty}(\Omega, X)$ and $\lambda \in L^{\infty}(\Omega)$ satisfy the following correlations:

 $\begin{array}{ll} 1. \ l_{\chi}(\hat{u}) \in \hat{u}, dom l_{\chi}(\hat{u}) = \Omega; \\\\ 2. \ \|l_{\chi}(\hat{u})(\omega)\|_{U(\omega)} = p(\|\hat{u}\|)(\omega); \\\\ 3. \ l_{\chi}(\hat{u} + \hat{v}) = l_{\chi}(\hat{u}) + l_{\chi}(\hat{v}); \\\\ 4. \ l_{\chi}(\lambda \hat{u}) = p(\alpha) l_{\chi}(\hat{u}); \\\\ 5. \ l_{\chi}(\hat{u}^{*}) = l_{\chi}(\hat{u})^{*}; \\\\ 6. \ l_{\chi}(\hat{u}\hat{v}) = l_{\chi}(\hat{u}) l_{\chi}(\hat{v}); \\\\ 7. \ the \ set \ \{l_{\chi}(\hat{u})(\omega) : \hat{u} \in L^{\infty}(\Omega, X)\} \ is \ dense \ in \ U(\omega) \ for \ all \ \omega \in \Omega. \end{array}$

It is well-known ((Kusraev, 1985), theorem 2) that for any C^* -algebra U over L^0 a measurable bundle of C^* -algebras (X, L) exists such that U is isometrically *-isomorphic to $L^0(\Omega, X)$, and on $L^{\infty}(\Omega, X)$ a lifting exists which is associated with a certain numerical lifting p.

A functional $f: U \to L^0$ is called L^0 -linear, if $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ for all $\alpha, \beta \in L^0, x, y \in U$. An L^0 -linear functional $f: U \to L^0$ is called L^0 -bounded, if one can find $c \in L^0$ such that $||f(x)|| \le c||x||$ for all $x \in U$. For an L^0 -linear L^0 -bounded functional $f: U \to L^0$ we put $||f|| = \sup\{|f(x)| : x \in U, ||x|| \le 1\}$. An L^0 -linear functional $f: U \to L^0$ is called positive $(f \neq 0)$, if $f(xx^*) \neq 0$ for all $x \in U$.

The mentioned functional is called a state, if $f \neq 0$ and ||f|| = 1.

A state φ is called pure, if the relation $\varphi \neq \psi \neq 0$, where ψ is an L^0 -linear functional, implies that $\psi = \lambda \varphi$ for certain $\lambda \in L^0, 0 \leq \lambda \leq 1$.

For $p \in [1; \infty]$ we denote

$$L^{p}(\Omega, X) = \{ \hat{u} \in L^{0}(\Omega, X) : \|u(\omega)\|_{X(\omega)} \in L^{p} \}.$$

From Bekbaev and Ganiev (2014) we know that $L_p(\Omega, X)$ is Banach space with

Malaysian Journal of Mathematical Sciences

V

respect to the norm:

$$\|\hat{u}\|_{L^{p}(\Omega,X)} = \left(\int_{\Omega} \|u(\omega)\|_{X(\omega)}^{p} d\mu\right)^{1/p} = \|\|u(\omega)\|_{X(\omega)}\|_{L^{p}(\Omega,X)}$$

Let

$$L^{\omega}(\Omega, X) = \bigcap_{p \ge 1} L^{p}(\Omega, X)$$

i.e.

V

$$L^{\omega}(\Omega, X) = \{ \hat{u} \in L^{0}(\Omega, X) : \|\hat{u}\|_{1} < \infty, \|\hat{u}\|_{2} < \infty, ..., \|\hat{u}\|_{p} < \infty, ... \}$$

We will consider in $L^{\omega}(\Omega, X)$ locally convex topology τ_X is generated by system of norms $\{\|\cdot\|_{L^p(\Omega,X)}\}_{p\geq 1}$. We know from Bekbaev and Ganiev (2014) that

$$\|\hat{u}\|_{L^{1}(\Omega,X)} \leq \|\hat{u}\|_{L^{2}(\Omega,X)} \leq \cdots \leq \|\hat{u}\|_{L^{p}(\Omega,X)} \leq \cdots$$

i.e. the topology τ_X generated by countable system of norms $\{\|\cdot\|_{L^n(\Omega,X)}\}_{n=1}^{\infty}$. By Theorem III.2.2 (Kantorovich and Akilov, 1982) it means that topological vector space $(L^{\omega}(\Omega, X), \tau_X)$ is metrizable space with respect to the metric

$$d(\hat{u}, \hat{v}) = \sum_{k=1}^{\infty} \frac{1}{2^k} \frac{\|\hat{u} - \hat{v}\|_{L^k(\Omega, X)}}{1 + \|\hat{u} - \hat{v}\|_{L^k(\Omega, X)}}$$

3. The State Space of C*-Algebras Over Arens Algebras

Let a unital C^* -algebra U over L^{ω} . We assume that U has the form $L^{\omega}(\Omega, X)$, where X is a measurable bundle of C^* -algebras with a vector-valued lifting.

If $\varphi \neq 0, a, b \in U, \lambda \in L^{\omega}$, then $\varphi((\lambda a + b)^*(\lambda a + b)) \neq 0$, i.e., $|\lambda|^2 \varphi(a^*a) + \overline{\lambda}\varphi(a^*b) + \lambda\varphi(b^*a) + \varphi(b^*b) \neq 0$. Therefore

$$\varphi(a^*b) = \overline{\varphi(b^*a)}, |\varphi(a^*b)|^2 \le \varphi(a^*a)\varphi(b^*b).$$
(1)

Consequently, for $\varphi \neq 0, a \in U$ we have $\varphi(a^*) = \overline{\varphi(a)}$; in addition, $\varphi = 0$, if $\varphi(e) = 0$.

Malaysian Journal of Mathematical Sciences 209

V

The following two propositions are versions of the well-known properties of positive functionals of C^* -algebras for the case of C^* -algebras over L^{ω} .

Proposition 3.1. Let U^* be the set of all L^{ω} -linear L^{ω} -bounded functionals on U. Then

(a) if $\varphi \neq 0$, then $|\varphi(x)|^2 \leq \varphi(e)\varphi(x^*x) \leq \varphi(e)^2 ||x||^2$, in particular, $\varphi \in U^*$ and $||\varphi|| = \varphi(e)$;

- (b) if $\varphi \in U^*$ and $\|\varphi\| = \varphi(e)$, then $\varphi \neq 0$;
- (c) if $\varphi \in U^*$ and $\|\varphi\| = \mathbf{1} = \varphi(e)$, then φ is a state;

(d) if $\varphi, \psi \neq 0$ and $\alpha, \beta \in L^{\omega}, \alpha, \beta \neq 0$ then $\alpha \varphi + \beta \psi \neq 0$ and $\|\alpha \varphi + \beta \psi\| = \alpha \|\varphi\| + \beta \|\psi\|$, the set E_U of all states on U is a convex set.

Proof. (a) Since $(L^{\infty}(\Omega, X), \|\cdot\|)$ is a BKS over $L^{\infty}(\Omega)$, we conclude that $(L^{\infty}(\Omega, X), \|\cdot\|_{\infty})$ is a Banach space with respect to the norm $\|x\|_{\infty} = \|\|x\|\|_{L^{\infty}(\Omega)}, x \in L^{\infty}(\Omega, \mathcal{X})$. It is known that $(L^{\infty}(\Omega, X), \|\cdot\|_{\infty})$ is a C^* -algebra over $\mathbb{C}.((?))$.

Let $x \in U$. For any $n \in \mathbb{N}$ put $\Omega_n = \{\omega \in \Omega : ||x||(\omega) < \frac{1}{n}\}$. We define function α_n by following formula:

$$\alpha_n(\omega) = \begin{cases} 0, & \omega \in \Omega_n; \\ \frac{1}{\|x\|(\omega)}, & \omega \in \Omega_n. \end{cases}$$

It is easy to check that $\alpha_n \in L^{\omega}$ for all n.

Put $z_n = \alpha_n x, n \in \mathbb{N}$. Then $||z_n^* z_n|| = ||\alpha_n x||^2 = |\alpha_n|^2 ||x||^2 = \pi_n \leq 1$, where $\pi_n = \chi_{\Omega \setminus \Omega_n}$.

Hence $||z_n^* z_n||_{\infty} \leq 1$, so $e - z_n^* z_n$ is a positive element in $L^{\infty}(\Omega, X)$, i.e. one can find $u \in L^{\infty}(\Omega, X)$ such that $e - z_n^* z_n = u_n^* u_n$. From here $\varphi(e) - \varphi(z_n^* z_n) = \varphi(u_n^* u_n) \geq 0$ and $\varphi(z_n^* z_n) \leq \varphi(e)$.

Set $x_n = ||x|| z_n$ and therefore

$$\varphi(x_n^* x_n) = \|x\|^2 \varphi(z_n^* z_n) \le \varphi(e) \|x\|^2$$

 \mathbf{SO}

210

$$\varphi(x_n^* x_n) \le \varphi(e) \|x\|^2.$$

Malaysian Journal of Mathematical Sciences

V

Now using inequality (1) we get

$$\varphi(x_n)|^2 = |\varphi(ex_n)|^2 \le |\varphi(e^*e)\varphi(x_n^*x_n) \le \varphi(e)^2 ||x||^2$$

which means

V

$$|\varphi(x_n)| \le \varphi(e) \|x\| \tag{2}$$

V

As $x_n = ||x||z_n = ||x||\alpha_n x$ we get

$$x_n = \|x\|\alpha_n x = \pi_n x. \tag{3}$$

Combining (2) and (3) we get $|\varphi(\pi_n x)| \leq \varphi(e) ||x||$ and $\pi_n |\varphi(x)| \leq \varphi(e) ||x||$

Since $\pi_n \uparrow \mathbf{1}$ we get

$$|\varphi(x)| \le \varphi(e) \|x\|. \tag{4}$$

From inequality (4) we get $\varphi \in U^*$ and $\|\varphi\| \leq \varphi(e)$. Since $\|e\| = \mathbf{1}$ we get $\|\varphi\| = \varphi(e)$.

(b) Let $\varphi \in U^*$ and $\|\varphi\| = \varphi(e)$. With no loss of generality, assume that $\|\varphi\| = \varphi(e) \in L^{\infty}(\Omega)$ (otherwise we consider $\frac{\varphi}{1+\|\varphi\|}$).For each $\omega \in \Omega$ we define a \mathbb{C} -linear functional φ_{ω} on $L^{\infty}(\Omega, X)$ by the following rule:

$$\varphi_{\omega}(x) = p(\varphi(x))(\omega), \, x \in L^{\infty}(\Omega, \mathcal{X}), \tag{5}$$

where p is a numerical lifting on $L^{\infty}(\Omega)$. Let $||x||_{\infty} \leq 1$. Then $||x|| \leq 1$ and

$$|\varphi_{\omega}(x)| = p(|\varphi(x)|)(\omega) \le p(\varphi(e))(\omega) = \varphi_{\omega}(e).$$

Consequently, φ_{ω} is a bounded functional on $L^{\infty}(\Omega, X)$, and $\|\varphi_{\omega}\| \leq \varphi_{\omega}(e)$. As $\|e\|_{\infty} = \mathbf{1}$, we get $\|\varphi_{\omega}\| = \varphi_{\omega}(e)$ for all $\omega \in \Omega$. This means that $\varphi_{\omega} \geq 0$ for all $\omega \in \Omega$, and therefore $\varphi \geq 0$.

Items (c) and (d) immediately follow from (b). \Box

Malaysian Journal of Mathematical Sciences 211

Proposition 3.2. Let U be a C^* -algebra over L^{ω} , and E_U be the set of all states on $U, \varphi \in E_U$. Consider the following conditions:

- (a) φ is an extreme point of E_U ;
- (b) φ is a pure state;

(c) φ is a homomorphism, i. e., $\varphi(xy) = \varphi(x)\varphi(y)$ for all $x, y \in U$.

Then $(a) \Leftrightarrow (b)$, and if U is commutative, then conditions (a), (b), (c) are equivalent.

Proof. (a) \Rightarrow (b) Let $\varphi \in E_U$ be an extreme point. Assume that φ is not pure. Then one can find $\psi \geq 0$ such that $\varphi \geq \psi$ and $\psi \neq \lambda \varphi$ for all $\lambda \in L^{\omega}, 0 \leq \lambda \leq 1$. Since $\mathbf{1} = \varphi(e) \geq \psi(e) \geq 0$, we have $\psi \neq \psi(e)\varphi$. Assume that $\psi(e) = \chi_A$ for certain $A \in \Sigma$. Then $\chi_A \psi = \chi, \chi_A(\varphi - \psi) \geq 0$, and $0 \leq \chi_A(\varphi(e) - \psi(e)) = \chi_A - \chi_A = 0$. Hence $\chi_A \psi = \chi_A \varphi$ and $\psi = \chi_A \varphi = \psi(e)\varphi$, what contradicts the inequality $\psi \neq \psi(e)\varphi$. Therefore there exists 0 < t < 1such that the set $B = \{\omega \in \Omega : t < \psi(e)(\omega) < 1\}$ has a positive measure, i.e., $\pi = \chi_B \neq 0$. Let us define $\alpha \in L^{\omega}$, putting

$$\alpha(\omega) = \begin{cases} 0, & w \in B\\ \frac{1}{\psi(e)(w)}, & w \in B \end{cases}$$

Then $t\alpha \leq \pi, \varphi_1 = \alpha \psi + \pi^{\perp} \varphi$ is a state, where $\pi^{\perp} = 1 - \pi$, and $t\varphi_1 = t\alpha \psi + t\pi^{\perp} \varphi \leq \pi \psi + \pi^{\perp} \varphi \leq \varphi$.

Put $\varphi_2 = \frac{\varphi - t\varphi_1}{1-t}$. Clearly, $\varphi \ge \varphi_2 \ge 0$ and $\|\varphi_2\| = \frac{\|\varphi\| - t\|\varphi_1\|}{1-t} = \mathbf{1}$, i.e., φ_2 is also a state, in addition, $\varphi_1 = t\varphi_1 + (1-t)\varphi_2$, what contradicts condition (a).

 $(b) \Rightarrow (a)$ Let φ be a pure state and $\varphi = t\varphi_1 + (1 - t)\varphi_2$, where $0 < t < 1, \varphi_1, \varphi_2 \in E_U$. Then $\varphi \ge t\varphi_1$, and therefore $t\varphi_1 = \lambda\varphi$ with certain $\lambda \in L^{\omega}, 0 \le \lambda \le 1$, in particular, $t\mathbf{1} = t\varphi_1(e) = \lambda\varphi(e) = \lambda$. Consequently, $\varphi = \varphi_1$, and therefore φ is a limiting point.

Now let U be a commutative C^* -algebra over L^{ω} .

 $(b) \Rightarrow (c)$. Let $\varphi \in E_U$ be a pure state. Let us first prove the following

$$\varphi(xx^*y) = \varphi(xx^*)\varphi(y), x, y \in U$$
(6)

Malaysian Journal of Mathematical Sciences

Let $x, u \in L^{\infty}(\Omega, \mathcal{X}), ||xx^*||_{\infty} < 1, e - xx^* = uu^*$. We will put

$$\psi(y) = \varphi(xx^*y), y \in U.$$

Using positivity φ , we get $\psi(yy^*) = \varphi(xx^*yy^*) = \varphi((xy)(xy)^*) \ge 0$ and $\varphi(yy^*) - \psi(yy^*) = \varphi(yy^*) - \varphi(xx^*yy^*) = \varphi((e - xx^*)yy^*) = \varphi(uu^*yy^*) = \varphi((uy)(uy)^*) \ge 0$. Hence $\varphi \ge \psi \ge 0$. As φ is a pure state, we obtain $\psi = \psi(e)\varphi$. Consequently, $\varphi(xx^*y) = \psi(y) = \psi(e)\varphi(y) = \varphi(xx^*)\varphi(y)$.

The fact that (6) implies (c) follows from the evident identity $x = \frac{1}{3} \sum_{k=1}^{3} \theta^{k} z_{k} z_{k}^{*}$, where $\theta = exp(2\pi i/3), z_{k} = e - \theta^{-k}, k = 1, 2, 3$, for all $x \in U$.

 $(c) \Rightarrow (b)$ Let φ be a homomorphism from U to L^{ω} and $\varphi \geq \psi \geq 0$. Then $\varphi_{\omega}, \psi_{\omega}$ are positive \mathbb{C} -linear functionals on $L^{\infty}(\Omega, \mathcal{X})$ and $\varphi_{\omega} \geq \psi_{\omega}$ for all $\omega \in \Omega$; in addition, φ_{ω} is a homomorphism from $L^{\infty}(\Omega, \mathcal{X})$ into \mathbb{C} , where $\varphi_{\omega}, \psi_{\omega}$ are defined by correlation (5). By Bratteli and Robinson (1982) (P. 67) we get that φ_{ω} is a pure numerical state on $L^{\infty}(\Omega, \mathcal{X})$. Hence $\psi_{\omega} = \psi_{\omega}(e)\varphi_{\omega}$ for all $\omega \in \Omega$, and therefore

$$\psi=arphi(e)arphi$$

213

For $\varepsilon > 0$ we put

$$W(\varepsilon) = \{ \lambda \in L^{\omega} : \rho(\lambda, 0) < \varepsilon \}.$$

The system $\mathbb{W} = \{W(\varepsilon) : \varepsilon > 0\}$ generates in L^{ω} a natural topology; in addition, \mathbb{W} is a base of zero neighborhoods in this topology.

Consider in U^* a separable vector *-weak topology, whose base of zero neighborhoods is represented by sets in the form

$$V\langle \varepsilon, \delta, x_1, \dots x_n \rangle = \{ f \in U^* : |f(x_i)| \in W(\varepsilon), i = \overline{1, n} \},\$$

where $x_1, ..., x_n \in U, \varepsilon > 0$.

By ∇ we define a Boolean algebra of all idempotents in L^{ω} and let $F \subset U^*$. If $(u_{\alpha})_{\alpha \in A} \subset F$, and $(\pi_{\alpha})_{\alpha \in A}$ is a unity partition in ∇ and the series $\sum_{\alpha \in A} \pi_{\alpha} u_{\alpha}^*$ -weakly converges, then the sum of this series is called a confusion of $(u_{\alpha})_{\alpha \in A}$ with respect to $(\pi_{\alpha})_{\alpha \in A}$. This sum is denoted by $mix(\pi_{\alpha} u_{\alpha})$. For F the symbol mixF stands for the set of all confusions of arbitrary families of elements of F. The set F is called cyclic, if mixF = F. For a directed set

A the symbol $\nabla(A)$ stands for the set of all unity confusions in ∇ indexed by elements of A. Define the ordering relation on $\nabla(A)$ as follows:

$$v_1 \le v_2 \Leftrightarrow \forall \alpha, \beta \in A, (v_1(\alpha) \land v_2(\beta) \ne 0 \rightarrow \alpha \le \beta) (v_1, v_2 \in \nabla(A)).$$

Let $(u_{\alpha})_{\alpha \in A}$ be a net in F. For each $v \in \nabla(A)$ we put $u_v = mix(v(\alpha)u_{\alpha})$ and obtain a new net $(u_v)_{v \in \nabla(A)}$. An arbitrary subnet of the net $(u_v)_{v \in \nabla(A)}$ is called a cyclic subnet of the net $(u_{\alpha})_{\alpha \in A}$. The set $F \subset U^*$ is said to be *-weakly cyclically compact (Kusraev, 1985), if it is cyclic and each net in Fhas a cyclic subnet, *-weakly converging to a certain point of F ((Kusraev, 1985), P. 50).

Proposition 3.3. Let U be a C^* -algebra over L^{ω} . Then

(a) E_U is *-weakly cyclically compact;

(b) if the algebra U is commutative, then the set K(U) of all pure states on U is *-weakly cyclically compact.

Proof. (a) As $E_U \subset U_1^*$ and U_1^* is *-weakly cyclically compact, it suffices to prove that E_U is a cyclic and *-weakly closed subset in U_1^* . As the measure μ is finite, we can consider only countable partitions in ∇ .

Let $(\pi_n)_{n\in\mathbb{N}}$ be an arbitrary unity partition in ∇ , $(\varphi_n)_{n\in\mathbb{N}} \subset K(U)$ and $\varphi = \sum_{n=1}^{\infty} \pi_n \varphi_n$. Then $\varphi_n(xx^*) \ge 0$ and $\varphi_n(e) = \mathbf{1}$ for all $x \in U, n \in \mathbb{N}$. Therefore $\varphi(xx^*) = \sum_{n=1}^{\infty} \pi_n \varphi_n(xx^*) \ge 0$ and $\varphi(e) = \sum_{n=1}^{\infty} \pi_n \varphi_n(e) = \sum_{n=1}^{\infty} \pi_n = \mathbf{1}$. Due to **Proposition 3.1** we have $\varphi \in E_U$.

If $\varphi \in U_1^*$ belongs to an *-weak closure of E_U , then one can find a net $\{\varphi_{\alpha}\}$ in E_U such that $\{\varphi_{\alpha}(x)\}$ converges in L^{ω} by norm to $\varphi(x)$ for all $x \in U$. . Consequently we obtain $\varphi(xx^*) \geq 0$ and $\varphi(e) = \mathbf{1}$ for any $x \in U$. That is means $\varphi \in E_U$.

(b) It suffices to prove that K(U) is a cyclic *-weakly closed subset in E_U .

Let $(\pi_n)_{n\in\mathbb{N}}$ be an arbitrary unity partition in $\nabla, (\varphi_n)_{n\in\mathbb{N}} \subset K(U)$ and $\varphi = \sum_{n=1}^{\infty} \pi_n \varphi_n$. Since the algebra U is commutative, by **Proposition 3.2** φ_n is a homomorphism for each $n \in \mathbb{N}$. Therefore for all $x, y \in U$ we have

$$\varphi(xy) = \sum_{n=1}^{\infty} \pi_n \varphi_n(xy) = \sum_{n=1}^{\infty} \pi_n \varphi_n(x) \varphi_n(y) = \sum_{n=1}^{\infty} \pi_n \varphi_n(x) \sum_{n=1}^{\infty} \pi_n \varphi_n(y) = \varphi(x) \varphi(y)$$

Malaysian Journal of Mathematical Sciences

214

Which means φ is a homomorphism, and therefore $\varphi \in K(U)$ (see **Proposition 3.2**).

Let now φ belong to an *-weak closure of K(U) and $\{\varphi_{\alpha}\}$ be a net in K(U)such that $\{\varphi_{\alpha}(x)\}$ converges in L^{ω} to $\varphi(x)$ for all $x \in U$. By **Proposition 3.2** we have $\varphi_{\alpha}(xy) = \varphi_{\alpha}(x)\varphi_{\alpha}(y)$ for all α and so $\varphi(xy) = \varphi(x)\varphi(y)$, i.e., φ is a homomorphism. Using **Proposition 3.2** once again, we obtain $\varphi \in K(U)$. \Box

Proposition 3.4. Let U be a commutative C^* -algebra over L^{ω} and $a \in U$. Then on U there exists $\varphi \in K(U)$ such that $\varphi(a^*a) = ||a||^2$.

Proof. Let us assume that $||a|| \in L^{\infty}(\Omega)$ (otherwise consider $\frac{a}{1+||a||}$).Let $B = \{\alpha e + \beta a^*a : \alpha, \beta \in L^{\infty}(\Omega)\}$. On B we define an $L^{\infty}(\Omega)$ -valued functional f by the rule

$$f(\alpha e + \beta a^* a) = \alpha + \beta \|a\|^2 (\alpha, \beta \in L^{\infty}(\Omega)).$$

Let us check is f defined correctly.

Case 1. Elements $\{e, a^*a\}$ are ∇ -linearly independent. Therefore for any $\pi \in \nabla$ and $\lambda_1, \lambda_2 \in L^{\omega}$ the formula $\pi(\lambda_1 e + \lambda_2 a^*a) = 0$ yields $\pi\lambda_1 = \pi\lambda_2 = 0$ ((Kusraev, 1985), P. 197). In this case the element $\alpha e + \beta a^*a$ is uniquely defined in terms of α, β . Consequently $f(\alpha e + \beta a^*a) = \alpha + \beta \|a\|^2$ is uniquely defined in terms of α, β .

Case 2. Elements $\{e, a^*a\}$ are ∇ -linearly dependent. With no loss of generality, assume that $a^*a = \lambda e, \lambda \in L^{\infty}(\Omega), \lambda \geq 0$. Then $f(\alpha e + \beta a^*a) = \alpha + \beta \|a\|^2 = \alpha + \beta \lambda$, and in this case f is defined correctly.

Fix $\omega \in \Omega$ and $\alpha, \beta \in L^{\infty}(\Omega)$. Put $\alpha_{\omega} = p(\alpha)(\omega), \beta_{\omega} = p(\beta)(\omega), e_{\omega} = l_{\chi}(e)(\omega), a_{\omega} = l_{\chi}(a)(\omega)$. As $a_{\omega}^* a_{\omega}$ is a positive element of the C*-algebra $U(\omega)$, the number $||a_{\omega}^* a_{\omega}||_{U(\omega)}$ belongs to the spectrum $Sp(a_{\omega}^* a_{\omega})$ of the element $a_{\omega}^* a_{\omega} a_{\omega}$. So we have the inequality

$$|\alpha_{\omega} + \beta_{\omega} ||a_{\omega}||^2_{U(\omega)}| \le \sup\{|\alpha_{\omega} + \beta_{\omega}\lambda_{\omega}| : \lambda_{\omega} \in Sp(a_{\omega}^*a_{\omega})\}.$$

By the formula for the spectral radius of the normal element $\alpha_{\omega} e_{\omega} + \beta_{\omega} a_{\omega}^* a_{\omega} \in U(\omega)$ we get

$$\sup\{|\alpha_{\omega} + \beta_{\omega}\lambda_{\omega}| : \lambda_{\omega} \in Sp(a_{\omega}^*a_{\omega})\} = \|\alpha_{\omega}e_{\omega} + \beta_{\omega}a_{\omega}^*a_{\omega}\|_{U(\omega)}$$

Malaysian Journal of Mathematical Sciences

Consequently $|\alpha_{\omega} + \beta_{\omega}||a_{\omega}||^2_{U(\omega)}| \leq ||\alpha_{\omega}e_{\omega} + \beta_{\omega}a_{\omega}^*a_{\omega}||$. Therefore and from the equality $a_{\omega}^* = l_{\chi}(a^*)(\omega)$ we get that $|\alpha + \beta||a||^2| \leq ||\alpha e + \beta a^*a||$. Which means that f is $L^{\infty}(\Omega)$ -bounded on B and $||f|| \leq 1$. But f(e) = 1, consequently, ||f|| = 1 = f(e). Due to the Hahn-Banach-Kantorovich theorem f has an extension g onto U, in addition, ||g|| = 1 = f(e) = g(e). This means that g is a state on U (see **Proposition 3.1**) and $g(a^*a) = f(a^*a) = ||a||^2$.

Let $K_a(U)$ be a set of states ψ such that $\psi(a^*a) = ||a||^2$. Clearly, $K_a(U)$ is a nonempty convex cyclic *-weakly closed subset of E_U . So $K_a(U)$ is an *-weakly cyclic compact, and therefore due to the vector Krein-Milman theorem ((Kusraev, 1985), P. 58) the set $K_a(U)$ has limiting points. Chose any limiting point $\varphi \in K_a(U)$ and assume that $2\varphi = \varphi_1 + \varphi_2$, where $\varphi_1, \varphi_2 \in E_U$. We have $\varphi_i(a^*a) \leq ||a||^2, i = 1, 2, \text{ and } 2||a||^2 = \varphi_1(a^*a) + \varphi_2(a^*a)$. The latter is possible only if $||a||^2 = \varphi_1(a^*a) = \varphi_2(a^*a)$, i.e., $\varphi_1, \varphi_2 \in K_a(U)$. As φ is a limiting point of $K_a(U)$, we have $\varphi = \varphi_1 = \varphi_2$. That means φ is a limiting point of E_U , and due to **Proposition 3.2** φ is a pure state on U.

4. Representation of Commutative C*-Algebras Over Arens Algebras

As in the previous section, we denote by K(U) the set of all pure states on a unital C^* -algebra U over L^{ω} .

Definition 4.1. We say that a mapping $f : K(U) \to L^{\omega}$ is mixing-preserving, if for an arbitrary unity partition $(\pi_n)_{n \in N}$ in ∇ and $(\varphi_n)_{n \in N} \subset K(U)$,

$$f\left(\sum_{n=1}^{\infty}\pi_n\varphi_n\right) = \sum_{n=1}^{\infty}\pi_n f(\varphi_n)$$

For $\alpha, \beta \in L^{\omega}, \varphi \psi \in K(U)$ we put

$$d_{K(U)}(\varphi,\psi) = \bigwedge \{\pi^{\perp} : \pi\varphi = \pi\psi, \pi \in \nabla\}$$

and

216

$$d(\alpha,\beta) = \bigwedge \{\pi^{\perp} : \pi\alpha = \pi\beta, \pi \in \nabla \}.$$

Proposition 4.1. A mapping $f : K(U) \to L^{\omega}$ preserves mixing if and only if $d(f(\varphi), f(\psi)) \leq d_{K(U)}(\varphi, \psi)$ for all $\varphi, \psi \in K(U)$.

Proof. Necessity. Let $\pi = d_{K(U)}(\varphi, \psi)^{\perp}$. Then $\pi \varphi = \pi \psi$. For $q \in K(U)$ we have $\pi \varphi + \pi^{\perp} q = \pi \psi + \pi^{\perp} q$, and since f preserves confusions, we conclude

Malaysian Journal of Mathematical Sciences

that $\pi f(\varphi) + \pi^{\perp} f(q) = \pi f(\psi) + \pi^{\perp} f(q)$. Hence $\pi f(\varphi) = \pi f(\psi)$, and therefore $d(f(\varphi), f(\psi)) \leq \pi^{\perp}$. Consequently,

$$d(f(\varphi), f(\psi)) \le d_{K(U)}(\varphi, \psi).$$

Sufficiency. If $\varphi = \sum_{n=1}^{\infty} \pi_n \varphi_n$, then $\pi_n \varphi = \pi_n \varphi_n$, $n \in N$, and therefore

$$\pi_n \le d_{K(U)}^{\perp}(\varphi,\varphi_n) \le d^{\perp}(f(\varphi),f(\varphi_n))$$

i.e., $\pi_n f(\varphi) = \pi_n f(\varphi_n)$ for all $n \in N$. This means that

$$f\left(\sum_{n=1}^{\infty}\pi_n\varphi_n\right) = \sum_{n=1}^{\infty}\pi_n f(\varphi_n).$$

We say that mappings, satisfying the inequality in **Proposition 4.1**, do not extend the ∇ -metric (Abasov and Kusraev, 1987).

Consider on K(U) an *-weak topology induced from U^* . Let $C_m(K(U), L^{\omega})$ stand for the set of all continuous, mixing-preserving mappings from K(U) into L^{ω} . For each $f \in C_m(K(U), L^{\omega})$ the set $f(x) : x \in K$ is a cyclic compact in L^{ω} , and therefore it is order bounded in L^{ω} . Consequently, an element $||f|| = sup|f(x)| : x \in K(U)$ of L^{ω} is defined. Consider in $C_m(K(U), L^{\omega})$ pointwise algebraic operations and the involution.

Proposition 4.2. $(C_m(K(U), L^{\omega}), \|\cdot\|)$ is a C^* -algebra over L^{ω} .

Proof. In view of **Proposition 4.1**, $C_m(K(U), L^{\omega})$ coincides with the set of all continuous mappings from K(U) into L^{ω} which do not extend the ∇ -metric. According to Abasov and Kusraev (1987) (theorem 2), $(C_m(K(U), L^{\omega}), \|\cdot\|)$ is a Banach-Kantorovich space over L^{ω} . The definition of the norm immediately implies that $\|f \cdot g\| \leq \|f\| \|g\|$ and $\|\overline{f} \cdot f\| = \|f\|^2$ for all $f, g \in C_m(K(U), L^{\omega})$.

The following result is a vector statement of the classical Gelfand–Naimark theorem.

Theorem 4.1. Let U be a unital commutative C^* -algebra over L^{ω} and let K(U) be the set of all pure states on U. Then U is isometrically *-isomorphic to $C_m(K(U), L^{\omega})$.

Proof is similar to that of the classical Gelfand–Naimark theorem.

Malaysian Journal of Mathematical Sciences

References

Abasov, N. M. and Kusraev, A. G. (1987). Cyclic compactification and the space of continuous vector functions. Sib. Matem. Zhurn, 28(1):17–22.

Bekbaev, D. U. and Ganiev, I. G. (2014). C* algebras over arens algebras.

- Bratteli, O. and Robinson, D. (1982). Operator Algebras and Quantum Statical Mechanics. Mir, Moscow.
- Chilin, V. I., Ganiev, I. G., and Kudaibergenov, K. K. (2008). The gelfandnaimark theorem for c*-algebras over a ring of measurable functions. *Izvestiya Vyshikh Uchebnyh Zavedeni*, 2:60–68.
- Ganiev, I. and Chilin, V. (2003). Measurable bundles of c*-algebras. Vladikavk. Matem. Shurn, 5(1):35–38.
- Gutman, A. (1995). Banach Bundles in the Theory of Lattice-Normalized Spaces, in Linear Operators Coordinated with the Order. Russian Academy of Science, Siberia.
- Kantorovich, L. V. and Akilov, G. P. (1982). Functional analysis. Pergamon Press, Oxford, 2 edition.
- Kaplasky, I. (1953). Modules over operator algebras. Ametican Journal of Mathematics, 75(4):839–858.
- Kusraev, A. (1996). Boolean Valued Analysis of Involutive Banach Algebras. North Ossetian State University, Vladikavkaz.
- Kusraev, A. (2003). Majorized Operators. Nauka, Moscow.
- Kusraev, A. G. (1985). Vector Duality and Its Applications. Nauka, Novosibirsk.